Exploring the incorporation of nitrogen in titanium and its influence on the electrochemical corrosion resistance in acidic media

J.J. Velasco-Velez^{1*}, B. Davaasuren², M. Scherzer², S. Cap², M. Willinger¹, J.-H. Guo³, R. Schlögl^{1,2}, and A. Knop-Gericke²

¹Max Planck Institute for Chemical Energy Conversion, Mülheim 45470, Germany
²Fritz-Haber-Institute of the Max Planck Society, Berlin 14195, Germany
³The Advance Light Source, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
*Corresponding author: velasco@fhi-berlin.mpg.de

Table 1: Summary of associated BE and chemical state for Ti 2p, O 1s and N 1s XP spectra.

Orbital	TiO_x/T^{4+}	TiO _{x-2} N _x	TiN _x /Ti ³⁺	O_2/H_2O	NO _x
Ti 2p	459.2 eV	457.2 eV	454.9 eV		
O 1s	530.6 eV	531.4 eV		532.5 eV	533.3 eV
N 1s		396.5 eV	397.0 eV		400.5 eV

Figure 1: a) SEM pictures of the CVD of TiN_x process fabricated at different temperature. b) Ti 2p, O 1s and N 1s XP spectra vs. temperature.

Figure 2: XRD spectra (top) and species inset (bottom) of a) pristine Ti samples b) nitrified from NH_3 at 800°C and c) at 1100°C.

Figure 3: CA measurements in 1 M of $HClO_4$ during ~32 hours and the effect in the film shows by SEM/EDX after the electrochemical stress test.

Figure 4: XPS measurements before and after electrochemical stress test: a) Ti 2p, b) O 1s and c) N 1s.

Figure 5: a) Valence band spectra before the electrochemical stress test. b) Valence band spectra after the electrochemical stress test.

Figure 6: Schematic of the d-orbitals splitting in energy t_{2g} and e_g .

Figure 7: NEXAFS measurements before and after electrochemical stress test: a) Ti L-edge, b) O and c) N K-edges.